Lagrange Multipliers

The method known as "Lagrange Multipliers" is an approach to the general problem of finding the maximum or minimum value of a function $\boldsymbol{g}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}$ when the variable is not allowed to range over all of $\mathbb{R}^{\mathbf{n}}$ but is constrained to lie in some subset. The method applies to subsets defined by the vanishing of a differentiable function $f: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}$. That is, the subset is of the form $\left\{\vec{x} \in \mathbb{R}^{n}: f(\vec{x})=0\right\}$.

The idea of the method is nicely illustrated by the case that $f(\mathrm{x}, \mathrm{y})=\mathrm{x}^{2}+\mathrm{y}^{2}-1$, so the subset is the compact set $\boldsymbol{e}=\left\{(x, y): x^{2}+y^{2}=1\right\}$, and the function g has the form $\boldsymbol{g}(\mathrm{x}, \mathrm{y})=\mathrm{Ax}^{2}+$ $2 \mathrm{Bxy}+\mathrm{Cy}^{2}$. The function \boldsymbol{g} of course attains its maximum and minimum on the circle $\boldsymbol{\mathcal { C }}$ since $\boldsymbol{\mathcal { C }}$ is compact and g is continuous. To locate the maximum and minimum points, we could note that $\boldsymbol{\mathcal { C }}$ can be traced out as $\gamma(t)=(\cos t, \sin t), t \in[0,2 \pi]$.

Then $\frac{d}{d t} g(\gamma(t))=\left.\operatorname{grad} g\right|_{(\cos t, \sin t)} \cdot \underbrace{(-\sin t, \cos t)}_{\gamma^{\prime}(t)}$ by the Chain Rule. We
want this to be 0 , since the derivative is 0 at maxima and minima.

Now $(-\sin t, \cos t)$ is perpendicular to $(\cos t, \sin t)=\frac{\operatorname{grad} f}{\|\operatorname{grad} f\|} \neq \overrightarrow{0}$. [This is an aspect of the general idea that a "level curve" of a differentiable function $\mathbb{R}^{2} \rightarrow \mathbb{R}$, is perpendicular to the gradient of the function.]

So $\left.\operatorname{grad} g\right|_{\gamma(t)}$ being perpendicular to $(-\sin t, \cos t)$ is the same as $\left.\operatorname{grad} g\right|_{\gamma(t)}$ being a multiple of grad $\left.f\right|_{\gamma(t)}$. Thus, we should look for (x, y) with $x^{2}+y^{2}=1$ and with $\lambda(x, y)=(2 A x+2 B y, 2 B x+2 C y)$ for some λ. This is the same as saying that $\left(\begin{array}{ll}A & B \\ B & C\end{array}\right)\binom{x}{y}=\frac{\lambda}{2}\binom{x}{y}$ or (x, y) is an eigenvector of $\left(\begin{array}{ll}A & B \\ B & C\end{array}\right)$.

You can interpret this two ways: Since you know how to find eigenvectors for symmetric matrices, this shows how to solve the max/min problem--or at least to find candidates for the solutions. Looked at the other way around, the fact that g on $\left\{(x, y): x^{2}+y^{2}=1\right\}$ has a max and a min implies that eigenvectors exist! This example is very suggestive. The following theorem is what it suggests:

Theorem (Lagrange): If $f, \boldsymbol{g}: \mathrm{U}: \mathbb{R}^{\mathbf{n}} \rightarrow \mathbb{R}$, where U is open, are continuously differentiable functions, if $\boldsymbol{f}(\mathrm{p})=0$ but grad $\left.f\right|_{p} \neq \overrightarrow{0}$, and if
$g(p)=\sup \{g(\vec{x}): \vec{x} \in U \& f(\vec{x})=0\}$ then $\exists \lambda \in \mathbb{R}$ э $\left.\operatorname{grad} g\right|_{p}=\left.\lambda \cdot \operatorname{grad} f\right|_{p}$.
[The same holds if $g(p)=\inf \{g(\vec{x}): \vec{x} \in U \& f(\vec{x})=0\}$ by applying the theorem to $-\mathrm{f}!$][NB: Continuity of grad \boldsymbol{g} is actually not needed!]

Proof: By translation and rotation of $\mathbb{R}^{\mathbf{n}}$ coordinates and by replacing f by $u f$ for a suitable $u \in \mathbb{R}, u \neq 0$, we can assume WOLOG that $\vec{p}=\overrightarrow{0}$ and $\left.\operatorname{grad} f\right|_{p}=(0, . ., 0,1)$. By the Implicit Function Theorem , there is a differentiable function $\boldsymbol{F}: \mathbb{R}^{\mathbf{n - 1}} \rightarrow \mathbb{R}$ defined on a neighborhood of $(0,0, \ldots, 0)$ $\in \mathbb{R}^{\mathrm{n}-\mathbf{1}} \ni \boldsymbol{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}-1}, \boldsymbol{F}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}-1}\right)\right)=0$. Let $\gamma_{k}(\mathrm{t})=\left(0, \ldots, 0, \boldsymbol{t}, 0, \ldots, 0, \boldsymbol{F}(0, \ldots, 0, \boldsymbol{t}, 0, \ldots, 0), \boldsymbol{t}\right.$ in the $\mathrm{k}^{\text {th }}$ slots. Then $\frac{d}{d t} f\left(\left.\gamma_{k}(t)\right|_{t=0}=0\right.$ so $0=\left.\operatorname{grad} f\right|_{0} \cdot \gamma_{k}^{\prime}(t)$. But $\left.\operatorname{grad} f\right|_{0} \cdot \gamma_{k}^{\prime}(t)=\operatorname{the}^{\text {th }}$ component of $\gamma_{\mathrm{k}}^{\prime}(\boldsymbol{t})=\left(0, \ldots, 1,0, \ldots, 0,\left.\frac{\partial F}{\partial x_{k}}\right|_{(0, \ldots, 0)}\right)$.

Thus $\left.\frac{\partial F}{\partial x_{k}}\right|_{(0, \ldots, 0)}=0, \forall \mathrm{k}=1, \ldots, \mathrm{n}-1$.

Next we compute $\left.\frac{d}{d t} g\left(\gamma_{k}(t)\right)\right|_{t=0}, \mathrm{k}=1, \ldots, \mathrm{n}-1$. This must be 0 since $g(\overrightarrow{0})$ is a maximum for all points in $\{\vec{x}: \vec{x} \in U, f(\vec{x})=0\}$ and $f\left(\gamma_{k}(t)\right)=0, \forall \boldsymbol{t}$. But $\frac{d}{d t} g\left(\gamma_{k}(t)\right)\left|=\gamma_{k}^{\prime}(0) \cdot \operatorname{grad} g\right|_{\overrightarrow{0}}=$ the $\mathrm{k}^{\text {th }}$ component of gradg $\left.\right|_{\overrightarrow{0}}$ by the facts that $\left.\frac{\partial F}{\partial x_{k}}\right|_{(0, \ldots, 0)}=0$ and that
$\left.\gamma_{k}^{\prime}(t)\right|_{t=0}=\left(0, \ldots, 1,0, \ldots,\left.\frac{\partial F}{\partial x_{k}}\right|_{(0, \ldots, 0)}\right)=(0, \ldots, 1,0, \ldots 0,0)$. Thus only the $\mathrm{n}^{\text {th }}$ component of gradg $\left.\right|_{\overrightarrow{0}}$ can possibly be nonzero so that $\left.\operatorname{gradg}\right|_{\overline{0}}$ is a multiple of $\left.\operatorname{grad} f\right|_{\overrightarrow{0}}=(0, \ldots, 0,1)$ as required.

This argument shows, as part of the proof, that the "level set"
$\{\vec{x}: f(\vec{x})=0\}$ is, in a neighborhood of $\overrightarrow{0}$, actually a "graph" over the $\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}-1}, 0\right)$ coordinate hyperplane. In \mathbb{R}^{3}, this would exhibit the level set as locally a "smooth surface" in the intuitive (and precise, too) sense.

When $\mathrm{n}>3$, the level set is a "smooth hypersurface". This all depends on $\left.\operatorname{grad} f\right|_{p} \neq \overrightarrow{0}$.

The intuition here is that if $\left.\operatorname{grad} g\right|_{0}$ were not a multiple of $\left.\operatorname{grad} f\right|_{0}$ then one could move in $\{\vec{x}: f(\vec{x})=0\}$ along the "projection" of grad $\left.g\right|_{0}$ on the $\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}-1}\right)$ subspace and in that direction, \boldsymbol{g} would have nonzero derivative, contradicting that g has a maximum on $\{\vec{x}: f(\vec{x})=0\}$ at $\overrightarrow{0}$. But the Implicit Function Theorem argument is crucial: otherwise one does not know that movement is possible in that direction while still remaining on the level "surface" $\left\{\vec{x}=\left(x_{1}, \ldots, x_{n}\right): f(\vec{x})=0\right\}$. If $\mathrm{n}=2$ and $\boldsymbol{f}(\mathrm{x}, \mathrm{y})=\mathrm{x}^{2}+\mathrm{y}^{2}$, for example, then $\{\vec{x}: f(\vec{x})=0\}$ contains only one point! No movement is possible.

Exercise: Given a symmetric matrix $\mathrm{A}=\left(a_{\mathrm{ij}}\right)$ apply Lagrange multipliers to $f(\vec{x})=\|\vec{x}\|^{2}-1$ and $g(\vec{x})=\sum a_{i j} x_{i} x_{j}=\sum_{i} a_{i i} x_{i}^{2}+2 \sum_{i<j} a_{i j} x_{i} x_{j}$ to prove the existence of an eigenvector of A (namely, $\vec{x} \ni f(\vec{x})=0$ and $g\left(\overrightarrow{x_{0}}\right)=$ max of g on $\{\vec{x}: f(\vec{x})=0\}$ is an eigenvector $)$.

