
Lagrange Multipliers 

The method known as "Lagrange Multipliers" is an approach to the general 

problem of finding the maximum or minimum value of a function g: n →  

when the variable is not allowed to range over all of n but is constrained 

to lie in some subset.  The method applies to subsets defined by the 

vanishing of a differentiable function f: n→  . That is, the subset is of the 

form{ }: ( ) 0nx f x∈ = .   

 

The idea of the method is nicely illustrated by the case  

that  f(x, y)=x2+y2 – 1 , so the subset is the compact set 

C={ }2 2( , ) : 1x y x y+ = , and the function g has the form g(x, y)=Ax2 + 

2Bxy + Cy2 .  The function g of course attains its maximum and minimum 

on the circle C since C is compact and g is continuous.  To locate the 

maximum and minimum points, we could note that C can be traced out as 

( ) (cos ,sin )t t tγ =  , t∈[0,2π] .   

Then (cos ,sin )
'( )

( ( )) grad ( sin ,cos )t t
t

d g t g t t
dt

γ

γ = ⋅ −  by the Chain Rule.  We 

want this to be 0, since the derivative is 0 at maxima and minima.   
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Now ( s is perpendicular to in ,cos )t− t grad(cos ,sin ) 0
grad

ft t
f

= ≠ . [This is 

an aspect of the general idea that a "level curve" of a differentiable function 

2 → , is perpendicular to the gradient of the function. ]  

So ( )grad tg γ  being perpendicular to ( sin ,cos )t t− is the same as ( )grad tg γ  

being a multiple of ( )grad tf γ .  Thus, we should look for (x, y) with 

x2+y2=1 and with   λ(x, y)= (2Ax + 2By, 2Bx + 2Cy) for some λ.  This is 

the same as saying that 
2

A B x x
B C y y

λ⎛ ⎞⎛ ⎞ ⎛
=⎜ ⎟⎜ ⎟ ⎜

⎝ ⎠⎝ ⎠ ⎝

⎞
⎟
⎠
 

or (x, y) is an eigenvector of 
A B
B C

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

You can interpret this two ways: Since you know how to find eigenvectors 

for symmetric matrices, this shows how to solve the max/min problem--or 

at least to find candidates for the solutions.  Looked at the other way 

around, the fact that g on { }2 2( , ) : 1x y x y+ =  has a max and a min 

implies that eigenvectors exist! This example is very suggestive.  The 

following theorem is what it suggests: 
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Theorem (Lagrange): If f, g: U: n → , where U is open, are continuously 

differentiable functions , if f(p)=0 but grad 0pf ≠ , and if 

{ }( ) sup ( ) : & ( ) 0g p g x x U f x= ∈ = then ∃ λ ∈  ∋ 

grad gradp pg fλ= ⋅ . 

[The same holds if { }( ) inf ( ) : & ( ) 0g p g x x U f x= ∈ = by applying the 

theorem to – f!][NB: Continuity of grad g is actually not needed!] 

Proof:  By translation and rotation of n coordinates and by replacing f by 

uf for a suitable u∈ , u≠0, we can assume WOLOG that  and 0p =

grad (0,..,0,1)pf = . By the Implicit Function Theorem , there is a 

differentiable function F: n-1 →  defined on a neighborhood of (0,0,...,0) 

∈ n-1 ∋ f(x1,x2,…,xn-1,F(x1,x2,…,xn-1))=0.  Let 

γk(t)=(0,…,0,t,0,…,0,F(0,…,0,t,0,…,0), t in the kth slots. Then 

0
( ( ) 0k t

d f t
dt

γ
=
=  so 00 grad '(k )f tγ= ⋅ .  But 0

'grad ( )kf tγ⋅ = the nth 

component of γk'(t )=
(0,...,0)

0,...,1,0,...,0,
k

F
x

⎛ ∂
⎜ ⎟⎜ ⎟∂⎝ ⎠

⎞
.   

Thus 
(0,...,0)

0
k

F
x
∂

=
∂

, ∀ k=1,…,n-1 .   
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Next we compute  
0

( ( ))k
t

d g t
dt

γ
=

, k=1,…,n-1 .  This must be 0 since ( )0g  

is a maximum for all points in { }: , ( )x x U f x 0∈ =  and ( ( )) 0kf tγ = , ∀ t. 

But 0
'( ( )) (0) gradk k

d g t g
dt

γ γ= ⋅ = the kth component of 0gradg  by the 

facts that 
(0,...,0)

0
k

F
x
∂

=
∂

 and that 

0
(0,...,0)

'( ) (0,...,1,0,..., ) (0,...,1,0,...0,0)k t
k

Ft
x

γ
=

∂
= =

∂
.  Thus only the nth 

component of 0gradg  can possibly be nonzero so that 0gradg is a multiple 

of 0grad (0,...,0,1)f =  as required.  

 

This argument shows, as part of the proof, that the "level set" 

{ }: ( ) 0x f x = is, in a neighborhood of 0 , actually a "graph" over the 

(x1,…,xn-1,0) coordinate hyperplane.  In 3, this would exhibit the level set 

as locally a "smooth surface" in the intuitive ( and precise, too) sense.  

When n>3, the level set is a "smooth hypersurface".  This all depends on 

grad 0pf ≠ . 
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The intuition here is that if 0grad g  were not a multiple of 0grad f  then 

one could move in { }: ( ) 0x f x = along the "projection" of 0grad g  on the 

(x1,…,xn-1) subspace and in that direction, g would have nonzero derivative, 

contradicting that g has a maximum on { }: ( ) 0x f x =  at 0 .  But the 

Implicit Function Theorem argument is crucial: otherwise one does not 

know that movement is possible in that direction while still remaining on 

the level "surface" { }1( ,..., ) : ( ) 0nx x x f x= = . If  n=2 and f(x, y) = x2+y2, 

for example, then { }: ( ) 0x f x =  contains only one point! No movement is 

possible.  

 

Exercise: Given a symmetric matrix A=(aij) apply Lagrange multipliers to 

2
( ) 1f x x= −  and to prove the 

existence of an eigenvector of A (namely, 

2( ) 2ij i j ii i ij i j
i i j

g x a x x a x a x x
<

= = +∑ ∑ ∑

( ) 0x f x∋ = and 

{ }0( ) maxof on : ( ) 0g x g x f x= = is an eigenvector).  
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