Lagrange Multipliers

The method known as "Lagrange Multipliers" is an approach to the general problem of finding the maximum or minimum value of a function $g: \mathbb{R}^n \to \mathbb{R}$ when the variable is not allowed to range over all of \mathbb{R}^n but is constrained to lie in some subset. The method applies to subsets defined by the vanishing of a differentiable function $f: \mathbb{R}^n \to \mathbb{R}$. That is, the subset is of the form $\{\vec{x} \in \mathbb{R}^n : f(\vec{x}) = 0\}$.

The idea of the method is nicely illustrated by the case that $f(x, y)=x^2+y^2-1$, so the subset is the compact set $\mathbf{c}=\{(x, y): x^2 + y^2 = 1\}$, and the function g has the form $g(x, y)=Ax^2 + 2Bxy + Cy^2$. The function g of course attains its maximum and minimum on the circle \mathbf{c} since \mathbf{c} is compact and g is continuous. To locate the maximum and minimum points, we could note that \mathbf{c} can be traced out as $\gamma(t) = (\cos t, \sin t)$, $t \in [0, 2\pi]$. Then $\frac{d}{dt}g(\gamma(t)) = \operatorname{grad} g|_{(\cos t, \sin t)} \cdot \underbrace{(-\sin t, \cos t)}_{\gamma(t)}$ by the Chain Rule. We

want this to be 0, since the derivative is 0 at maxima and minima.

Now $(-\sin t, \cos t)$ is perpendicular to $(\cos t, \sin t) = \frac{\operatorname{grad} f}{\|\operatorname{grad} f\|} \neq \vec{0}$. [This is

an aspect of the general idea that a "level curve" of a differentiable function $\mathbb{R}^2 \to \mathbb{R}$, is perpendicular to the gradient of the function.] So $\operatorname{grad} g|_{\gamma(t)}$ being perpendicular to $(-\sin t, \cos t)$ is the same as $\operatorname{grad} g|_{\gamma(t)}$ being a multiple of $\operatorname{grad} f|_{\gamma(t)}$. Thus, we should look for (x, y) with $x^2+y^2=1$ and with $\lambda(x, y)=(2Ax+2By, 2Bx+2Cy)$ for some λ . This is the same as saying that $\begin{pmatrix} A & B \\ B & C \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \frac{\lambda}{2} \begin{pmatrix} x \\ y \end{pmatrix}$ or (x, y) is an eigenvector of $\begin{pmatrix} A & B \\ B & C \end{pmatrix}$.

You can interpret this two ways: Since you know how to find eigenvectors for symmetric matrices, this shows how to solve the max/min problem--or at least to find candidates for the solutions. Looked at the other way around, the fact that g on $\{(x, y): x^2 + y^2 = 1\}$ has a max and a min implies that eigenvectors exist! This example is very suggestive. The following theorem is what it suggests: **Theorem** (Lagrange): If $f, g: U: \mathbb{R}^n \to \mathbb{R}$, where U is open, are continuously differentiable functions, if f(p)=0 but grad $f|_p \neq \vec{0}$, and if

$$g(p) = \sup \left\{ g(\vec{x}) : \vec{x} \in U \& f(\vec{x}) = 0 \right\} \text{then } \exists \lambda \in \mathbb{R} \Rightarrow$$

grad $g|_p = \lambda \cdot \text{grad } f|_p.$

[The same holds if $g(p) = \inf \{g(\vec{x}) : \vec{x} \in U \& f(\vec{x}) = 0\}$ by applying the theorem to -f!][NB: Continuity of grad g is actually not needed!]

Proof: By translation and rotation of \mathbb{R}^n coordinates and by replacing f by uf for a suitable $u \in \mathbb{R}$, $u \neq 0$, we can assume WOLOG that $\vec{p} = \vec{0}$ and grad $f|_p = (0,...,0,1)$. By the Implicit Function Theorem , there is a differentiable function $F: \mathbb{R}^{n-1} \to \mathbb{R}$ defined on a neighborhood of (0,0,...,0) $\in \mathbb{R}^{n-1} \ni f(x_1,x_2,...,x_{n-1},F(x_1,x_2,...,x_{n-1}))=0$. Let $\gamma_k(t)=(0,...,0,t,0,...,0,F(0,...,0,t,0,...,0), t$ in the kth slots. Then

 $\frac{d}{dt}f(\gamma_k(t)\big|_{t=0} = 0 \text{ so } 0 = \operatorname{grad} f\big|_{\bar{0}} \cdot \gamma_k'(t). \text{ But } \operatorname{grad} f\big|_{\bar{0}} \cdot \gamma_k'(t) = \operatorname{the n^{th}}$

component of $\boldsymbol{\gamma}_{\mathbf{k}}'(t) = \left(0, ..., 1, 0, ..., 0, \frac{\partial F}{\partial x_k}\Big|_{(0, ..., 0)}\right).$

Thus $\frac{\partial F}{\partial x_k}\Big|_{(0,\dots,0)} = 0, \forall k=1,\dots,n-1$.

Next we compute $\left. \frac{d}{dt} g(\gamma_k(t)) \right|_{t=0}$, k=1,...,n-1. This must be 0 since $g(\vec{0})$

is a maximum for all points in $\{\vec{x}: \vec{x} \in U, f(\vec{x}) = 0\}$ and $f(\gamma_k(t)) = 0, \forall t$.

But
$$\frac{d}{dt}g(\gamma_k(t)) = \gamma_k'(0) \cdot \operatorname{grad} g|_{\bar{0}} = \operatorname{the} k^{\operatorname{th}} \operatorname{component} \operatorname{of} \operatorname{grad} g|_{\bar{0}}$$
 by the

facts that $\left. \frac{\partial F}{\partial x_k} \right|_{(0,\dots,0)} = 0$ and that

$$\gamma_{k}'(t)\Big|_{t=0} = (0,...,1,0,...,\frac{\partial F}{\partial x_{k}}\Big|_{(0,...,0)}) = (0,...,1,0,...0,0)$$
. Thus only the nth

component of $\operatorname{grad} g|_{\overline{0}}$ can possibly be nonzero so that $\operatorname{grad} g|_{\overline{0}}$ is a multiple of $\operatorname{grad} f|_{\overline{0}} = (0, \dots, 0, 1)$ as required. \Box

This argument shows, as part of the proof, that the "level set"

 $\{\vec{x}: f(\vec{x}) = 0\}$ is, in a neighborhood of $\vec{0}$, actually a "graph" over the $(x_1, \dots, x_{n-1}, 0)$ coordinate hyperplane. In \mathbb{R}^3 , this would exhibit the level set as locally a "smooth surface" in the intuitive (and precise, too) sense. When n>3, the level set is a "smooth hypersurface". This all depends on grad $f|_p \neq \vec{0}$. The intuition here is that if $\operatorname{grad} g|_{\bar{0}}$ were not a multiple of $\operatorname{grad} f|_{\bar{0}}$ then one could move in $\{\vec{x}: f(\vec{x}) = 0\}$ along the "projection" of $\operatorname{grad} g|_{\bar{0}}$ on the (x_1, \dots, x_{n-1}) subspace and in that direction, g would have nonzero derivative, contradicting that g has a maximum on $\{\vec{x}: f(\vec{x}) = 0\}$ at $\vec{0}$. But the Implicit Function Theorem argument is crucial: otherwise one does not know that movement is possible in that direction while still remaining on the level "surface" $\{\vec{x} = (x_1, \dots, x_n): f(\vec{x}) = 0\}$. If n=2 and $f(x, y) = x^2 + y^2$, for example, then $\{\vec{x}: f(\vec{x}) = 0\}$ contains only one point! No movement is possible.

Exercise: Given a symmetric matrix $A=(a_{ij})$ apply Lagrange multipliers to $f(\vec{x}) = \|\vec{x}\|^2 - 1$ and $g(\vec{x}) = \sum a_{ij} x_i x_j = \sum_i a_{ii} x_i^2 + 2 \sum_{i < j} a_{ij} x_i x_j$ to prove the existence of an eigenvector of A (namely, $\vec{x} \ni f(\vec{x}) = 0$ and

 $g(\vec{x_0}) = \max \text{ of } g \text{ on } \{\vec{x} : f(\vec{x}) = 0\}$ is an eigenvector).