Lagrange Multipliers
The method known as "Lagrange Multipliers" is an approach to the general
problem of finding the maximum or minimum value of a function g: R* —R
when the variable is not allowed to range over all of R" but is constrained
to lie in some subset. The method applies to subsets defined by the

vanishing of a differentiable function f R"—R . That is, the subset is of the

form{i eR": f (;() = 0}.

The idea of the method is nicely illustrated by the case

that f(x, y)=x*+y? — 1, so the subset is the compact set

C:{(X, y) X2+ y? 21}, and the function g has the form g(x, y)=Ax* +
2Bxy + Cy*. The function g of course attains its maximum and minimum
on the circle €since € is compact and g is continuous. To locate the

maximum and minimum points, we could note that € can be traced out as

y(t) = (cost,sint) , t<[0,2x] .

d .
Then ag(y(t)) =grad g| ., iy - (-8iNt,COSt) by the Chain Rule. We

ﬁt)

want this to be 0, since the derivative is 0 at maxima and minima.
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Now (—Sint,cost)is perpendicular to (COSt,sint) = ot # 0. [This is

Jorec 1]

an aspect of the general idea that a "level curve" of a differentiable function
R? —R, is perpendicular to the gradient of the function. ]

So grad g|y(t) being perpendicular to (—Sint,cost)is the same as grad g|7(t)

being a multiple of grad f|y(t). Thus, we should look for (x, y) with

x’+y’=1 and with \(x, y)= (2Ax + 2By, 2Bx + 2Cy) for some \. This is
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You can interpret this two ways: Since you know how to find eigenvectors
for symmetric matrices, this shows how to solve the max/min problem--or
at least to find candidates for the solutions. Looked at the other way
around, the fact that g on {(X, y): X° + y2 zl} has a max and a min
implies that eigenvectors exist! This example is very suggestive. The

following theorem is what it suggests:



Theorem (Lagrange): If f, g: U: R* —R, where U is open, are continuously
differentiable functions , if f{p)=0 but grad f|p #0, and if
g(p)=sup{g(x):xeU & f(x)=0}then IX € R 5

gradg| =A-grad f| .

[The same holds if g(p)=inf {g(i) xeU & f (i) = O} by applying the
theorem to — fl][NB: Continuity of grad g is actually not needed!]

Proof: By translation and rotation of R" coordinates and by replacing f by
uf for a suitable u€R, u=0, we can assume WOLOG that B =0 and

grad f|p =(0,..,0,1). By the Implicit Function Theorem , there is a
differentiable function F: R*' —R defined on a neighborhood of (0,0.,...,0)
eR™ 5 flx,,Xy,. ., X1, F(X),Xg,...,%,,))=0. Let

~.(t)=(0,...,0,t,0,...,0,F(0,...,0,t,0,...,0), t in the k™ slots. Then

% f (7. (), =0 so 0=grad f|;-5'(t). But grad f|; -;/k'(t): the n'
component of 7' (¢ )—[O, 1,0, ,0,f j
8Xk (0,...,0)
Thus a—F =0,V k=1,...n-1
OX, 0..0)




, k=1,...n-1 . This must be 0 since ( (6)
t=0

Next we compute %g(]/k (1)
is a maximum for all points in {;( ‘X e U, f (i) = 0} and f(y, (1) =0,V ¢

But %g(yk ('[))| = 7/k'(0) : gradg|6 =the k™ component of gradg|6 by the

facts that E =0 and that
OX, 0..0)
' oF
7, () o= ©,...,.1,0,....— )=(0,...,1,0,...0,0). Thus only the n
= OX, 0.0

component of grad g|6 can possibly be nonzero so that grad g|6is a multiple

of grad f|6 =(0,...,0,1) as required. O

This argument shows, as part of the proof, that the "level set"

{i: f (;() = O}is, in a neighborhood of 6, actually a "graph" over the
(X,--+,%, 1,0) coordinate hyperplane. In R? this would exhibit the level set
as locally a "smooth surface" in the intuitive ( and precise, too) sense.
When n>3, the level set is a "smooth hypersurface". This all depends on

grad f| #0.



The intuition here is that if grad g|6 were not a multiple of grad f |6 then
one could move in {;( f (;() = 0} along the "projection" of grad g|6 on the
(xy,...,X, ) subspace and in that direction, g would have nonzero derivative,
contradicting that g has a maximum on {;( f (i) = 0} at 0. But the

Implicit Function Theorem argument is crucial: otherwise one does not

know that movement is possible in that direction while still remaining on
the level "surface" {;( = (X, X)) f (;() = O}. If n=2 and f(x,y) = x*+y?,

for example, then {XZ f(x)= O} contains only one point! No movement is

possible.

Exercise: Given a symmetric matrix A=(q;) apply Lagrange multipliers to

ij o

F) =X -1 and g(x) = >axx, => ax>+2) a,XX; to prove the

i<j
existence of an eigenvector of A (namely, X3 f(X)=0and

g(x:) =maxof g on {;&  f (;() = 0} is an eigenvector).
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